DAV Series

DAV-MH Air Release & Vacuum Break Valves

General

DAV-MH Air Release and Vacuum Break Valves

First Operation:

Venting air from a filling pipeline

The standard valve allows discharge of trapped air while the system is being filled with liquid. The valve will remain open, even at very high air flow velocity (A), until the liquid has reached the float and lifted it to its closed position (B). Available for valve models with suffix "K" and "KA".

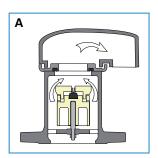
Vacuum Breaking (Air Intake) of a draining pipeline

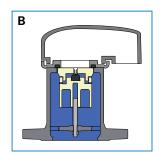
Decrease or the pressure in the system to negative value and the simultaneous drainage of the valve chamber, forces the floats down, allowing the admittance of air into the pipe, thus preventing negative pressure and possible collapse of the pipe (C).

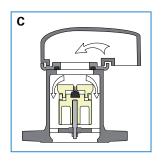
Available for valve models with suffix "K" and "KA".

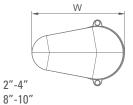
Release of dissolved air from a pressurized pipeline

Air that is being released from the liquid in the pressurized system or being introduced into the system from open sources and pumping vortexes, accumulates in the air release valves located at high places.


The accumulated air forces the liquid out of the valve chamber, so the floating force of the bottom float decreases.


The bottom float then drops, allowing for the trapped air to be vented through the small nozzle at the center of the top float. Then the liquid level rises, the bottom float is lifted and the nozzle closes (D).


Available for valve models with suffix "KA" only.

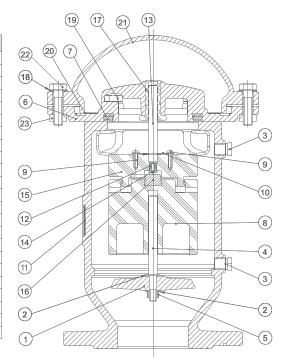

Technical Data

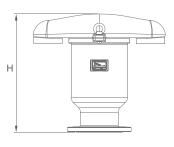
Dimensions & Weights

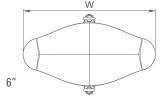
				•						
	Nom. diameter		Height H		Width W		d-Kinetic orifice area		Approx. shipping Weight	
	inch	mm	inch	mm	inch	mm	inch ²	mm ²	kg	lbs
	2	50	13.7	350	5.9	150	3.0	1960	11	24.2
	3	80	16.7	425	9.4	240	7.7	5000	22.4	49.3
	4	100	19.2	490	12.2	310	12.2	7855	34	75
	6	150	22.0	560	15.7	400	27.4	17670	64.5	142
	8	200	22.8	580	18.9	480	48.7	31415	88.5	195
ĺ	10	250	27.4	695	22.6	575	48.7	49090	207	456

Connections: ISO, ANSI, BS, AS, JIS flanges, BSP, NPT threads (50mm valves only)

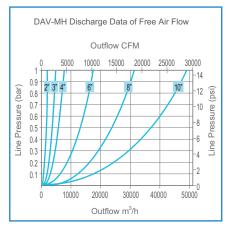
H

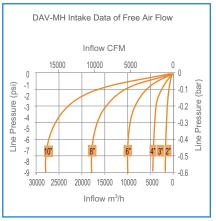


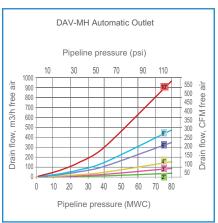

Specifications


Nominal sizes	2" / 50mm to 10" / 250mm				
Pressure rating	PN16 (230 psi), PN25 (350 psi) and PN40 (580 psi)				
Minimal pressure for drip-tight sealing	0.2 bar				
Max. Temperature	65°C (150°F)				

Components


No.	Description	Material		
1	Body	D.I.		
2	Washer	SST		
3	Plug	BRS		
4	Bottom Guiding Shaft	SST		
5	Nut	SST		
6 7	Plate	D.I.		
	Seal	NR		
8	Float Body	PE-H.D.		
9	Bolt	SST		
10	Disc	SST		
11	I.D. Plate	AL		
12	0-Ring 2-009	NBR		
13	Top Guiding Shaft	SST		
14	Nozzle	SST		
15	Float Cover	PE-H.D.		
16	Nozzle Seal	EPDM		
17	Guiding Insert	POM		
18	Washer	SST		
19	Bolt	SST		
20	Cover Seal	EPDM		
21	Cover	D.I.		
22	Bolt	SST		
23	Nut	SST		





Aero-Dynamic Performance

Surge Arresting Device for DAV valves

DAV-MH-SA

Features

- Surge Arresting Automatically prevents water hammer pressure surges associated with air release valves operation.
- Optimum performance Air outlet can be adjusted according to surge analysis results, on site to a required aero-dynamic performance. The SA addition is assembled on user selected valves only (at local high elevated points). The flow through other valves remains unrestricted.
- Simplicity Can be easily assembled on any of Dorot's DAV-M series air valves.
- Reliability Simple, durable mechanism, fabricated from high grade materials. Can be serviced without having to put the air valve out of service.

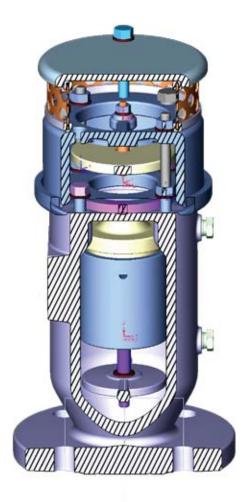
When air is admitted into the pipe, an in "Air Pocket" is created in the local high points where the Air / Vacuum valve is located.

The returning flow re-fills the "pocket".

Too-high velocity of the approaching water column may generate a pressure surge when it reaches the valve.

Air venting

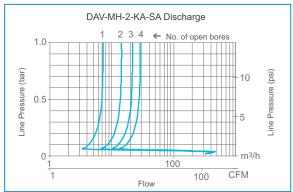
The Surge Arrestor addition of "DAV-M" valves limits the air outflow, when the escaping air velocity exceeds a threshold value.

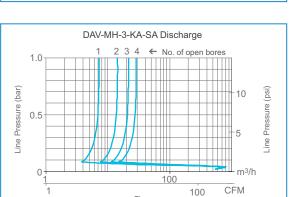

This optional addition creates a temporary, slow closing "Air Cushion" that decelerates the water velocity, preventing water hammer effect.

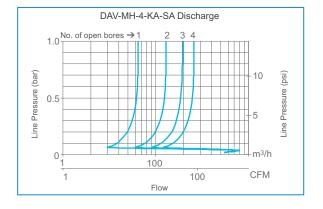
Adjustment of the air outflow can be done by plugging or un-plugging a set of bores in the SA adjustment plate (see pictures right side).

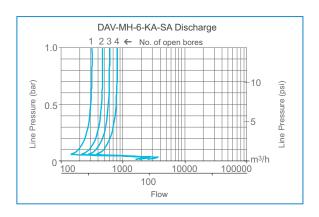
Vacuum Breaking (Air Intake)

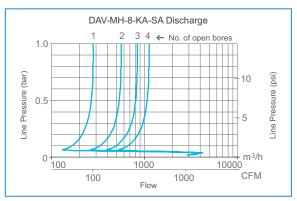
Decrease or the pressure in the system to negative value and the simultaneous drainage of the valve chamber, forces the floats down, allowing the admittance of air into the pipe. The SA disc is in its low position, allowing unrestricted air flow into the system.

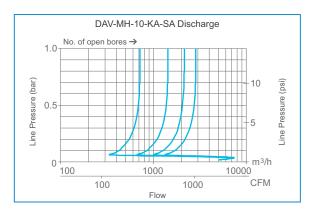


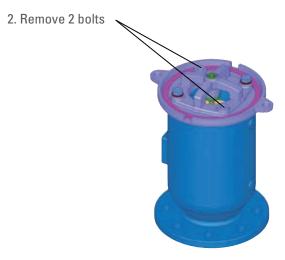





Technical Data


Aero Dynamic Performance (Free air outflow)





ASSEMBLY

Assembly of Surge-Arrresting Device

Ordering Guide

Options:

DAV	Model	Diameter	Connections	Туре	Optional Addition	Pressure rating
	MH Standard MHT Threaded (2" only)	2" / 50mm to 10" / 250mm	ISO PN16 ANSI 150 BSP NPT BSTD BSTE ISO PN25 ISO PN40 ANSI 300 JIS Standards AS4087	KA Combination valve K Kinetic	SA Surge Arrestor	PN16 / 230psi PN25 / 360psi PN40 / 580psi

Example: 4" (100mm) Valve, ANSI 300 Combination Valve with Surge Arrestor, Pressure Rated 40 bar (580psi)

DAV	MH	4	ANSI 300	KA	SA	PN40

Examples of applications:

Dorot Water Management

Setting New Global Standards of Innovation, Expertise and

Reliability

Since its establishment in 1946, Dorot drives the market with continued innovation, uncompromising excellence and firm commitment to its customers. Through its unique water-management solutions, the company also contributes to the global efforts for environment protection. Dorot invests in research and development of quality products and solutions.

